Number System Converter
Convert between Binary, Decimal, Octal, and Hexadecimal number systems with step-by-step conversion process. Essential for digital systems and programming.
Number Input
Number Systems Overview
Number systems are methods of representing numbers using different bases. Each system uses a specific set of digits and follows positional notation where each digit's value depends on its position.
Supported Number Systems
Binary (Base 2)
Uses only digits 0 and 1. Fundamental to digital systems and computer architecture.
- Digits: 0, 1
- Example: 1010₂ = 10₁₀
- Used in: Computer memory, digital circuits
Decimal (Base 10)
Standard number system used in everyday life with digits 0-9.
- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Example: 42₁₀
- Used in: Mathematics, daily calculations
Octal (Base 8)
Uses digits 0-7. Historically used in computing as a shorthand for binary.
- Digits: 0, 1, 2, 3, 4, 5, 6, 7
- Example: 52₈ = 42₁₀
- Used in: Unix permissions, legacy systems
Hexadecimal (Base 16)
Uses digits 0-9 and letters A-F. Widely used in programming and digital systems.
- Digits: 0-9, A, B, C, D, E, F
- Example: 2A₁₆ = 42₁₀
- Used in: Memory addresses, color codes, programming
Conversion Methods
To Decimal Conversion
Multiply each digit by the base raised to its position power:
- Binary 1010₂: 1×2³ + 0×2² + 1×2¹ + 0×2⁰ = 8 + 0 + 2 + 0 = 10₁₀
- Hex 2A₁₆: 2×16¹ + 10×16⁰ = 32 + 10 = 42₁₀
From Decimal Conversion
Repeatedly divide by the target base and collect remainders:
- 42₁₀ to Binary: 42÷2=21 R0, 21÷2=10 R1, 10÷2=5 R0, 5÷2=2 R1, 2÷2=1 R0, 1÷2=0 R1 → 101010₂
Applications
Computer Science
- Memory addressing
- Data representation
- Assembly programming
- Debugging and analysis
Digital Electronics
- Logic circuit design
- Microcontroller programming
- Data communication
- Error detection codes
Examples & Practice
Example 1: Convert 255₁₀
- Binary: 11111111₂
- Octal: 377₈
- Hexadecimal: FF₁₆
Example 2: Convert 1100₂
- Decimal: 12₁₀
- Octal: 14₈
- Hexadecimal: C₁₆